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The equations of the contact problem of a circular plate interacting with a half-space inhomogencous in depth are considered. 
The Lam~ coefficients vary with depth in the half-space according to a general law--that of a gradient (continuously inhomo- 
geneous) or laminated I~-space. Use is made of the series expansions of the contact pressures under the plate and of its deflections 
[1], the terms of the series being the eigenfunetions of the equation of the bending of the plate with boundary conditions 
representing support conditions for the plate. To solve the dual integral equation, the two-sided asymptotic method of [2, 3] is 
used. It is proved that, u~nlike orthogonal polynomial methods and asymptotic methods of the "large ~" and "small X" types, the 
method proposed here is effective for both rigid and flexible plates and is asymptotically exact for ~, ~ 0 and X ~ ** (Z is a 
characteristic geometric parameter, defined as the ratio of the thickness of an irthomogeneous layer to the radius of the plate). 
An analysis is made of how different laws of variation of the l.am6 coefficients with depth in the half-space may affect the 
distribution of contact pressures under the plate, its deflection and the settlement of the surface of the half-space outside the 
contact zone. 

1. The eontact probh;m for the interaction of a circular plate with a half-space inhomogeneous in depth reduces 
to solving the following system of equations [4] 

L°w(r) = D -u [p ( r ) -q ( r ) ] ,  0 ~  < r ~  < I (1.1) 

TQ(cx)L(~cX)Jo(cxr)do~ = skw(r), 0 <<- r <~ 1 
o 

Q(a )Jo (ar )da=O,  r > l  (1.2) 
0 

r = r ' l R ,  S = O o R 3 / D ,  O 0 = O ( 0  ) 

O(z) = 2M(z) (M(z )  + A(z)) / (2M(z) + A(z)) 

where L ° is the differential operator of the bending of the plate in a cylindrical system of coordinates, p(r)  is the 
distributed load, q(r) is the contact stresses under the plate and w(r) is its deflections. The plate, of radius R, rests 
freely on an isotropie half-space, whose l_am6 coefficients vary with depth according to the law 

A=A0(z ) ,  M=Mo(z ) ,  - H < . z < . O  

A = A 0 ( - H ) ,  M = M o ( - H ) , - * * < z < - H  

where A0(z) and M0(z) are arbitrary continuous functions of depth (the variable z), ~ = H/R is a characteristic 
geometrical parameter, s is a parameter characterizing the bending stiffness of the plate andD is the bending stiffness 
of the plate. 

The function w(r) must satisfy the flee-edge conditions on the contour of the plate 

r = l ,  d2w v d w  0, d A w = 0  (1.3) 
dr ---~- + r d-~ = dr 

where v is Poisson's ratio of the plate and A is the Laplacian in polar coordinates; the function must, moreover, 
be bounded at the origin together with a differential expression corresponding to the bending moment. 

In the general c a ~  of arbitrary continuous inhomogeneity, the transform of the kernel L(cx) is constructed by 
the numerical method proposed in [5]; on the assumption that 
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min O(z)>~q >0, max O(z)~<c<..,  lim O(z)=const (1.4) 
zE(0:-~)  z¢(0;-~*) z~-**  

it possesses the following properties [5, 6] 

L(tz)=A+BItxl+O(~t2),  ot---~O, A= lira O(0)/O(z) 

L ( t X ) = l + C l Q t l  - I  +O(Gt -2) ,  ~-.-~oo, B,C=const (1.5) 

2. We shall assume an acquaintance with the definitions of the classes of functions C~(0, 1), L2(0, 1) [7], 
C~+(-1 ,  1) [8]. Le t f¢  64(0, 1) (or, more generally, f e  L2(0, 1)), and suppose that the function satisfies conditions 
(1.3). Then it can be represented in [0, 1.] as a series in the natural modes of oscillation of a circular plate with a 
free edge [9] 

I 
f ( r ) =  : fro(pro(r), O~r~<l, fm =Jf(p)cp.,(p)pdp (2.1) 

m=0 0 

(P0 = 2 ~ ,  (Pro ( r )  = An, [Jo (k,nr) - Bm/0 (k,nr)] 
B., = J~ ( k., ) / /~ ( k,,, ) (2.2) 

The values of Am and kin, m = O, 1 . . . . .  10, are given in [1]. f i f e  LZ(O, 1), we understand (2.1) to mean that 

~0 f'q~' '  (r) 2 lira f- =o, Ilfll~:,, = Y-f:~ 
k"*']l ,, = L~iu ~ m=O 

which is Parseval's equality. 
Let us assume that the deflection function of the plate can be expanded in series (2.1) 

I 

w(r) = : w,,,(D,,, (r) ,  0 ~< r ~< I; w m = J w(p)q) m (p}pdp (2.3) 
m=O 0 

"IIfldng linearity into account, we conclude that the expression for the contact pressures is a linear combination of 
particular solutions qm(r) with the sarae coefficients Wm as for the deflection functions w(r) in (2.3) 

q(r)= : wmqm(r), O~<r~<l (2.4) 
m =0 

The particular solutions qra(r) (m = 0, 1 . . . .  ) are determined from the integral equation (1.2). The method of 
construction and the actual form of the functions q=(r) may be found in [10]. We shall say that L(~t) belongs to 
class IIu(Z~, IN, M) if the following relations hold, respectively 

L( )~x ) = 

N Cx 2 + A 2 ~ _  2 2 2 -2 -1 I-IN li~=l ( i )(or +Bi~" ) ==-LN (~OQe 

7d i 2 

whereAi, B i q = 1, 2 . . . . .  N),  Ck, Dk (k = 1, 2 . . . . .  M) are certain constants, (,4 i - Ak) (B i - Bk) :/: 0, i * k. 
It was proved in [8] that if L(c 0 possesses properties (1.4) it can be approximated by expressions of the 

form 

L(ZoO = L N (kct) + / ~  (Z(x) (2.5) 

Henceforth, an integral operator corresponding to L(c 0 and belonging to class Xwill also be denoted by X. 
Using (2.5), we rewrite (1.2) in operator form as 

llmq + Y-~q = f  (2.6) 

Corresponding to the operator HAt in (2.6) we have a function L(ct) of  class I-IN, and to EN---a function L ( ~ )  of  
class Z~¢, M = 00. 

We shah say that Eq. (1.2) satisfies condition A if, whenever L(¢t) ¢ FIN, one can construct a closed solution 
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following [11]. We shall denote this solution by 

qN = lint/• (2.7) 

In other words, condition A means that, for functions f(x) of some class W(c, d), a function q(x) of some class 
V(c, d) exists such that (2.7) holds. It follows from (2.7) that 

L. a, <" m¢n N )~f~w(c,d), ,n( FI N) = const (2.8) 

where mOO denotes some constant which depends on the actual form of the function in X. 
It has been proved [8] that, if conditions (1.4) are satisfied, Eq. (1.2) has a unique solution in the space ~ + ( - 1 ,  

1) for ~pm(r) of type (2.2) for 0 < X < Z* and ~, > X °, where X* and X a are certain fixed values of g, and moreover 

~q(r)[~+(_l.i) <~ m(I'I N,T-.** )M¢ (-I, I  ) (2.9) 

Thus, g may be chosen in such a way that the operator 17~1Y-,** is a contraction [7], and expression (2.7) is an 
asymptotically exact solution of Eq. (2.6) as 7. ---, 0 and X ~ **. 

3. Let us replace w(r) on the right of Eq. (1.2) by the mth eigenfunction q~(r). Using p, r evious results [8], 
one can write down a closed approximate solution of Eq. (1.2) in the form (2.7), relative to q~a(r) [10]. 

The contact pressures q~m(r), in turn, may be written as series (2.1). We have 

I 
qN(r)= ~. ~,;'q~j(r), %7 = ~q~m(r)cpJ (p)pdp (3.1) 

j=O 0 

The actual form of r; 7 is shown in [10]. 
We shall assume t]aatp(r) e C"(0, 1) (or, in a more general form, p(r) ~ L2(0, 1)), i.e. it can be expressed as a 

series 

I 
p(r)= ~ p,,,q~.,(r), Pm =Jp(p)cp.,(p)pdp (3.2) 

m=O 0 

Then, substituting expansions (2.3), (3.1) and (3.2) into (1.1), we obtain an infmite system of linear algebraic 
equations for the coefficients W,n, which can be written in canonical form as [7] 

a ee 

Wm_...fT • wjE;  Pm =,_'TT' m = 0 , 1 , 2  .... ; a = - I  
km )=0 kra 

(3.3) 

We have 

•1/,,.I 2 . **, ,2 
1"77" ~ M  2.1Pml <'0 

m=OI •m m=O 

given the restrictions imposed onp(r).  
It follows from estimate (2.9) and the equilibrium conditions of the plate that 

2gl 2gl 
I Iq(r)rdrdc# = ! IP(")rdrdtp 
oo oo 

We have 

n,=O j=O m=O j=O m=O 

Thus, by Theorem 3a of [7, p. 503], if a -- -1  is not an eigenvaiue of system (3.3), the system may be solved by the 
reduction method (replacing it by a system of n equations in n unknowns) 

a n - I  m Pm 
Win--" ~ Y. wjEj =";T' m=O,1 ..... n - l ;  a = - I  (3.4) 

~m j=O km 

where, for sufficiently large n, system (3.4) is solvable and the approximate solutions converge to the exact solution. 
We have thus proved the following theorem. 
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Theorem 1. Let conditions (1.4) hold and letp(r) e V/(0, 1), i = 0 or i = 1 (VI(0 , 1) --- 6"4(0, 1), V2(0, 1--- L2(0, 
1)). Then the system of Eqs (1.1) and (.1.2) is uniquely solvable for w(r) ¢ V/(0, 1) (i = 0 or i = 1), q(r) ~ C(1~+(-1, 
1) for 0 < ~, < X* and X > ~,a, where X and X a are certain fixed values of X. Under these conditions the following 
estimates hold 

IIw(r)llv~(oj) <- m(n~.z.)llP(r)nv~(o.,, 

nq(r)lld,~(_, j) -< m! 

4. We will now proceed to an asymptotic determination of the settlement in the surface of the half-space outside 
the contact zone. Equation (1.2) was obtained by using the following representation for the vertical displacements 
of the surface of the half-space 

f ( r ) =  s -~i  O(a>L(Xa)'O(ar)da (4.1) 

Let us find an analytic expression for this functionf(r) when L(a) ¢ H#, r > I. I fL(a) ¢ HN, the function LTv(a) 
is obtained in analytic form when constructing a solution of Eq. (1.2). Using formula (4.1), we obtain an expression 
for the functionsf(r), r > 1, if L(a )  ¢ IIN, which we denote byja(r).  By (2.4), QN(a) may be written as 

QN(o{)= ~. wmQmN(c() 
m=O 

The corresponding expressions for the functionsfNm(r) are 

(r) = 2_ Am {G(r,k m ) _ B,,G(r, ikr n ) + 

+~ lDnbn~ .  - I,, Wn(km) -B . ,Wn( i km)+  T~C~y, , ( ia jX - I )  , r > l ,  m=O,I ,2 
= j = l  

(4.2) 

a sin a 
Wn(a)= L~(Xa)y,(a),  T , ( a ) =  b2~_2 +a  2 

tn = i exp[X-Ib'(t-l)] dt, Gfar)= i ~ d t  
I ~r 2 - t  2 O~r" - t "  

D. = (an b, --~_bn + bi 2 
i~n 

Finally, we obtain 

M 
f N ( r  ) ~ N = w , , f ~ )  ( r ) ,  r > l  (4.3) 

m=0 

where Wm are the same coefficients as in (2.3). 
The question arises of the use of formulae (4.2) and (4.3) to determine the settlement of the surface of an inhomo- 

geneous half-space, i.e. when the transform of the kernel L(a) possesses properties (1.5) and L(a) belong to class 
S~,, u. By Theorem 1, solution (2.7), represented by formulae (3.1) and (2.4), is an asymptotically exact solution 
of Eq. (1.2) when the operators L(a) belong to class S~ M as X ---> 0 and X---> **. Substituting this asymptotic solution 
q~ into (1.2) for L(a) ~ SN, M, we find an approximate soiution for the settlement of the surface of the inhomogeneous 
half-space outside the contact zone, f ( r )  in the general ease, when L(a) ¢ SN, ~t 

f l ( r )  = (l ' l N + ZM)qN(r), r > I 

The asymptotic properties of the solution of system (1.1), (1.2) are established in the finite interval r ~ [0, 1]. 
We shall show that these asymptotic properties are preserved when changing to the approximately determined 
functionf(r), r ~ (1, **). 

We may assume without loss of generality that M = 1. In that ease 
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M i. ~ [,7 cX-lcz ] 
T.lq (r)= Jq (p)p| J.~2 ±n2~_2 Jo(OZS)Jo(fzP)d (x dp= 

0 LO ~ . . . .  

I 
= C ~ . - t K o ( r D ~ ,  - t  )~qN(p)lo(pD~.-t)pdp, r >  I 

o 

Using the asymptotic properties of cylindrical functions of an imaginary argument, we obtain the estimates 

maxZlqN(r)l<~M*exp(-Dk-U~), ~.---)0, (k>~.*), ~ = r - p > 0  
r>|  

maxY.lqN(r)<~MO~.-I+~, ~.---}00 (~.>~LO), g > O ,  £--)0 
r >  

where the constants M* and M ° are independent of L This implies the following theorem. 

Theorem 2. Formulae (4.2) and (4.3) provide an asymptotically exact representation of the settlement of the 
surface of a half-sp~:e inlaomogeneous in @pth outside the contact zone under the assumptions of Theorem 1, 
for 0 < ~. < ~,* and 7, > ~Y, where ~* and ~Y are certain fixed values of k. 

Remark. Analogous results hold for the bending of a beam resting on a strip inhomogeneous in depth or on an 
inhomogeneous half-space. The proof uses the asymptotic properties of the approximate solutions of the appropriate 
contact problems, as established in [2, 3, 12]. 

6. As an example, consider the bending of a circular plate under a uniformly distributed load of unit intensity. 
In that case ( p ( r )  = p = const) 

'I 

p,/ 

~} ( a )  _ _ 

:L % 

(c) 

(b) P 

'zSD o.:  z 
P 

(,/) 

Fig. 1(a--a). 
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I 

# l..~ I l / j  / 
P p 

(e) (f) 

O .OJ / 0 O,f 1 

Fig. l(e-h). 

Po = P'Vf212; pro=O, re=l ,2  .... 

The plate rests on a half-space whose Young's modulus varies with depth according to the law 

E(z)=Eoq)(z), -1 ~ z <~ 0; E(z)=Eoq)(-l), z < - I  

Poisson's ratio of the foundation is v0 = 1/3, - -  < z ~< 0 and that of the plate vn = 0.15. 
We consider the following types of inhomogeneity. 
1. Monotonic (power-law) 
(a) increasing with depth 

(b) decreasing 

(P l ( z )=O, l - z  2uk, a~=lnO, l (k - l )121nO,5 ,  k = 2  

(P2(z)=l.l-z 2ak, at=ln(I,l-O.lk)/21nO,5, k=9 

2. Non-monotonic (sinusoidal) 

~ ( z )  = i , I  + sin(r~z), ~04(z ) ffi 0 .1  - s in(tcz) 

Figure I shows graphs of the quantity x°(r) = qn(r)q~(r), which characterizes the distribution of the contact normal 
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pressures under the plate on the inhomogeneous foundation compared with a homogeneous base qo(r), for different 
values of ~. (qo(r) conresponds to E(z) --- E~ z < 0). Here and below Fig. l(a), (c), (e) and (g) correspond to a 
plate bending stiffness s = 0, 1; Fig. l(b), (d), (f) and (h) correspond to s = 3. The digits on the curves indicate 
the values of ;L The ordinate X0 in Fig. l(a) and (b) corresponds to the law 91(z), in Fig. l(c) and (d) to q~(z), 
in Fig. l(e) and (f) to q~(z) and in Fig. l(g) and (h) to 94(z). We can conclude that in the case of an inhomogeneity 
which decreases monotonically with depth, as in 92(z), negative contact pressures occur, indicating that the plate 
separates from the foundation (Fig. lg and h). In such cases the formulation of the problem must be modified. 
The plate/foundation contact zone may be determined from the condition that the contact pressures vanish at 
the boundaries of the zone. The separation zone expands when the bending stiffness of the plate is increased 
(Fig. lh). 

For the non-monotonic inhomogeneity laws 93(z) and q)4(z) it is characteristic that when ~z)  at the surface of 
the foundation increases with depth (93(z)), one observes an increase in the quantity x0 characterizing the coefficient 
of the contact stress singularity as the plate edge is approached from within. The plate does not separate from the 
base. 

If q)(z) at the surface of the foundation decreases with depth (q)4(z)), there is a decrease in x0 as the plate edge 
is approached from within. It is evident that the distribution of the contact pressures depends essentially both on 
the depth of the inhomogeneous layer and the form of inhomogeneity, and on the bending stiffness of the plate. 

Figure 2 shows graphs representing the relative settlement of the surface of the inhomogeneous half-space relative 
to that of a homogeneous base (under the plate and outside the contact zone) 

A(r)=w n(r)w(~ I(r), O~<r~<]; A(r)=fn(r)fo -I(r), r>]  

4 
f 

f 

# 

\ 
/ 6  

(o) 

O,.:v 

~ Z  - 

(c) 

zl 

0 
z 

/ ,  

(b) 

4 

# 

0 2 
P 

Fig. 2(a-d). 
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,t 
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" #  o,.r 3 ~ 

y - , \  

O Z 4 O g, 
(e) 

p, 
G0 

[ O,.¢- 

t, 

d J 
/ /  

Z 

(g) (h) 
Fig. 2(e-h). 

When ~ z )  is a monotonically increasing function (inhomogeneity law ~I(Z)), the "cratering" of the settlement 
of the base surface under the plate is steeper than for a homogeneous base (Fig. 2a, b). Conversely, when ~ z )  is 
monotonically decreasing (inhomogeneity law ~(z)) ,  the settlement cratering is shallower than for a homogeneous 
foundation (Fig. 2c, d). For the non-monotonic inhomogeneity laws ~ ( z )  and 94(z), the shape of the eratering 
depends essentially on ~- - the  relative thickness of the inhomogeneous layer under the plate (Fig. 2e--h). 
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